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Abstract-Mining the petabyte and growing archive of 

remotely sensed images to obtain the necessary information 
for land cover change studies becomes more difficult as more 
imagery is obtained and stored at various locations by 
government agencies or private companies.  The increasing 
importance of networking with the requirement to move data 
sets between different servers and clients makes the data 
volume problem particularly acute.  Mitigating this problem 
requires using data efficiently, that is, using data at the 
appropriate scale and resolution to adequately characterize 
phenomena, thus providing accurate answers to the questions 
being asked.  This requires a thorough understanding of the 
effects of adjusting image resolution to match the resolution 
of images from other sources or supporting data for 
biophysical or urban growth models. 

This paper summarizes a NASA Intelligent Systems-funded 
project that is examining the use of fractals and geostatistical 
techniques as aids to image classification and segmentation, 
as indicators of the effects of image processing techniques 
such as rectification, rescaling, ratioing and classification, as 
indicators for change detection, and as metadata for mining 
and selecting appropriate imagery for global change studies.  
This project will provide benchmarked indices of image 
complexity that complement existing metadata schemas and 
will facilitate image retrieval and analysis.  This will 
streamline global change investigations by quickly identifying 
the proper source, lineage, general image content, scale, and 
resolution of imagery suited to an analysis of anthropogenic 
alterations in land cover, thus allowing researchers to 
concentrate on the underlying physical processes and 
potential consequences of these changes.   

 
I. INTRODUCTION 

 
Satellite and aircraft-borne remote sensors have gathered 

huge volumes of data over the past 30 years.  In the Earth 
Observing System (EOS) era, terabytes of image data are 
being archived every day [1].  These images are an 
important resource for establishing cause and effect 
relationships between human-induced land cover changes 
and alterations in climate and other biophysical patterns at 
local to global scales.  However, the spatial, temporal, and 
spectral characteristics of these data vary, thus 
complicating long-term studies involving several types of 
imagery.  This problem is particularly acute now that high-
resolution commercial imagery and airborne scanner data 

are available to researchers.  As the geographical and 
temporal coverage, the spectral and spatial resolution, and 
the number of individual sensors increase, the sheer 
volume and complexity of available data sets will 
complicate management and use of the rapidly growing 
archive of earth imagery.  Mining this vast data resource 
for images that provide the necessary information for 
climate change studies becomes more difficult as more 
sensors are launched and more imagery is obtained. 

This project is examining the use of fractals, lacunarity, 
wavelets, geostatistical techniques such as spatial 
autocorrelation statistics, and landscape metrics such as 
contagion and Shannon diversity indices in measuring and 
characterizing land covers and land-cover changes with a 
variety of multi-scale, multi-temporal, and multi-sensor 
remotely sensed data.  The purpose is to determine if these 
indices can be used to distinguish between landscapes that 
are captured in different spectral bands, pixel resolutions, 
and time periods.  Particular emphasis is placed on 
evaluating how fractals, lacunarity, and other spatial 
indices behave in regions undergoing anthropogenic 
changes such as deforestation and urbanization.  The 
outcome of this objective will be a set of global (i.e. whole 
image) measures that have been evaluated with respect to 
their accuracy and utility for inclusion in high-level, 
content-based searches of large image databases. Global 
measurement of the spatial characteristics of images are 
primarily used to provide indices and metadata for data 
retrieval and data mining.   

To date, some of the spatial measurement techniques 
outlined above have also been applied to small areas 
defined by moving windows within the study areas [2] in 
order to explore the utility of the proposed techniques in 
characterizing landscapes, so that new algorithms for 
image segmentation and classification, texture 
characterization, and edge/pattern detection can be 
developed.  This will increase the analyst’s ability to detect 
subtle changes between images or to identify regions of 
interest that require more detailed investigation.  The 
research and development of existing as well as new 
geospatial techniques for assessing land-cover change will 
be useful for regional as well as global environmental 



monitoring.  Gradual but consistent changes that are easily 
overlooked by human eyes or though traditional per-pixel 
image analysis techniques can more easily be detected 
through these spatial measurement techniques.  

Scale and resolution effects on the spatial indices have 
been explored through simulated as well as real-world 
images [3].  Comparisons among the analytical techniques 
are being made to determine their utility in selecting the 
spatial characteristics of images used to measure and map 
phenomena, such as changes in lake and sea levels, 
urbanization [4], deforestation, and other land cover 
alterations.  This will provide benchmarks for the accuracy 
and utility of spatial analyses as content-based indices of 
image complexity, as a basic means of segmenting images 
to highlight regions of interest, and as supplements to 
existing image classification techniques.   

Multi-scale analyses of simulated and real-world image 
data provide a benchmark for determining the accuracy of 
the spatial indices of complexity.  Multi-scale analysis 
using real image data provides further insights into the 
reliability of the various spatial indices in characterizing 
and segmenting different landscapes.  The analysis of the 
effects of atmospheric correction, noise reduction, and 
contrast stretching on the indices helps determine what 
type and amount of image preprocessing is needed and 
whether raw remote sensing data can be used directly for 
change detection.  As sensor resolutions increase in the 
NASA-EOS era and beyond, file sizes of these detailed 
images will limit the depth of possible analyses and will 
make imagery less portable unless rescaling techniques are 
employed to reduce the image resolution to a size 
appropriate to the physical phenomenon under 
investigation.  The findings of this project could provide 
insights into the determination of the optimum resolution 
for analyzing a physical phenomenon by remote-sensing 
data. 

 
II. DATA MINING 

 
The vast amount of information on the World Wide Web 

would be of little use without a means to locate 
information on topics selected by a user.  Search engines 
that rely on keyword matches between the query and Web 
page titles or other indexed data are essential for successful 
use of this resource.  Indexing multimedia data, such as 
imagery, videos, and audio files have proven to be 
problematic [5].  The many existing and potential uses for 
remotely sensed imagery make accessing images suited to 
a particular user’s needs extremely complex and difficult.  
This complexity is exacerbated by sensor characteristics 
such as spatial, temporal, and radiometric resolution, 
which are often different for each sensor.  The data 
indexing and search needs for global change investigations 
that seek to characterize anthropogenic impacts on climate, 
hydrology, and land cover are particularly demanding due 
to the range of data sets from old, low-resolution sensors 

and new, high-resolutions sensors that must be merged in 
multi-temporal investigations [6].   

Even seemingly simple searches for images depicting a 
particular location involve time-consuming analyses of the 
many individual scenes that have been gathered over the 
past 30 or more years, each having different sensor 
platforms, levels of quality (due to cloud cover, 
illumination, etc.), dates, and pre-processing.  Metadata 
schemes such as the Earth Observing System Data and 
Information System (EOSDIS) Core Metadata Model 
(http://ecsinfo.gsfc.nasa.gov) address this to some extent 
by specifying location, lineage (including image 
processing and projection information), sensor 
characteristics, and other identifying keys to aid searches 
for images of specific areas at specific times.  Ohm, et al., 
[7] characterize these as “high-level descriptors” which are 
generated when raw imagery is prepared for release.  Mid-
level descriptors include rule-based semantic identification 
of objects within a scene such as lakes, mountains, and 
vegetated areas.  Low-level descriptors are image 
characteristics such as shape, color, pattern, and texture.  
By their nature, the mid- and low-level descriptors are 
often user-specific, and it would not be practical to add all 
of this information as formal metadata, since it is 
impossible to anticipate all uses to which an image may be 
applied. 

It is becoming apparent that the common practice of 
using general metadata structures to access specific images 
is ineffective, thus pointing toward a need for intelligent 
image query techniques [8].  The MPEG-7 initiative aims 
to:  a) create standards for the description of shape, color, 
and texture of objects depicted in audiovisual data, b) 
implement a description scheme, and c) provide ways of 
extending these descriptors and schemes via a specification 
language [9].   

 Given the difficulties of indexing and searching the 
content of images stored in data repositories, we propose a 
hierarchical approach that begins with the traditional high-
level metadata items (such as location, date, sensor, etc), 
proceeds through customized mid-level searches of object 
identification (which would include items such as an 
assessment of whether the objects of interest are obscured 
by clouds), eventually followed by identification of images 
that depict the often small objects or subtle differences that 
are of interest in global change studies.  The latter requires 
low-level descriptors that use geometric characteristics 
(such as size, shape, and orientation), radiometric 
characteristics that are analogous to the “color” descriptors 
in general image description schemes [10], and measures 
of texture and pattern to identify regions of interest to the 
user.  Since the multi-spectral nature of most remotely 
sensed imagery has engendered an extensive list of tools 
for conducting radiometric investigations of images, the 
focus in this project on developing and evaluating indices 
of the spatial characteristics of either whole images in a 
global context or local subsets of images in the form of 



fixed or moving windows.  Since remotely sensed images 
of the earth’s surface have few familiar objects that can be 
easily subsumed into semantic classes and categories, our 
approach emphasizes content-based techniques that 
operate primarily as low-level descriptors of texture, 
shape, and pattern. 

 
III. SPATIAL INDICES 

 
Pixel-by-pixel image classification techniques that use 

the radiometric characteristics of a scene have been in use 
for a long time.  Increasing attention has been made 
recently to include the spatial/textural relationships 
inherent in an image in classification.  Spatial concepts 
such as size, shape, proximity, pattern and texture have 
only recently been incorporated into image classification 
procedures [11]. There are a number of indices that 
characterize the spatial structure of landscapes, including: 
contagion, dominance, and Shannon’s diversity [12].  
These indices are applicable to binary representations of 
landscapes that have been interpreted or classified.   Many 
of these have been integrated into a software module called 
FRAGSTATS [13].  Other measures of spatial complexity 
such as fractals [14]-[15], local variance [16], and 
techniques that employ wavelets [17]-[18], can be applied 
directly to raw images without the need for classification 
or land-cover identification, thereby enabling change 
detection before user-assisted land-cover identification.   

Analytical techniques in remote sensing that explicitly 
consider the spatial structure of imaged features have 
primarily been measures of image texture [19]-[20].  
Texture represents tonal variations in the spatial domain 
and determines the overall visual smoothness or coarseness 
of the imaged features [21].  Gray-tone spatial-dependence 
or co-occurrence matrices provide the basis for a number 
of texture measures including range, variance, standard 
deviation, entropy, or uniformity within a moving window.  
These measures have been shown [22] to be a potentially 
useful means for image classification.  Reference [23] 
proposed a geostatistical working definition of texture 
based on the variogram function to improve the 
performance of pixel-by-pixel classifiers.  An increase in 
overall accuracy was achieved by considering the pixel to 
be spatially autocorrelated with its neighbors and by 
introducing this dependence numerically into the classifier 
as texture descriptors. 

The application of geostatistics to remote sensing 
appears to offer great potential for analyzing multi-scaled 
data collected at different space, time and radiometric 
resolutions [24].  In its "purest" sense, geostatistics relate 
to statistical techniques that explicitly consider spatial 
autocorrelation by means of correlograms or variograms 
[25].  These are important tools for analyzing processes 
with continuous spatial indices; i.e., where the data 
represent spatio-temporal processes that occur 
continuously across or throughout a domain or region.  

From this purview, geostatistics may be particularly useful 
for characterizing and visualizing the state, distribution, 
pattern, and arrangement of landscape attributes and 
processes as manifested in multi-scale remote sensing data.   

Fractal analysis [14] provides tools for measuring the 
geometric complexity (number of discrete objects, 
perimeter to area ratios, and degree of spatial 
autocorrelation) of imaged objects.  Complexity is 
represented in terms of the fractal dimension, a non-integer 
value that ranges from 2.0 in the case of a perfectly flat 
image to 3.0 for a very rough surface that essentially fills a 
volume.  There has been a great deal of interest in this 
technique to model anthropogenic and naturally occurring 
phenomena [26]-[30].  There can be several features in an 
image that have different textures but share the same 
fractal dimension (in remote sensing, an expression of 
surface complexity.  Lacunarity, which describes the 
departure from translational invariance, together with 
fractal dimension, can distinguish between these different 
sets [14], [31]-[32].   

Multifractals are spatially intertwined fractals with a 
continuous spectrum of fractal dimensions [33]-[34].  
Instead of a non-integer scalar describing the fractal 
dimension, complexity in a multifractal set is represented 
as either a continuous function of dimensions or possibly 
as a combination of two or more discrete multifractal 
dimensions [33].  Lacunarity in multifractals is also 
defined as a function and not as a scalar, and, as in the case 
of monofractals, it is separate and distinct from the 
multifractal dimension function [34].  Reference [35] 
examined the use of multifractals in characterizing the 
scale invariance of phenomena such as topography, clouds, 
and magnetic anomalies, depicted at different sensor 
resolutions. 

Spatial autocorrelation of raster images can also be 
characterized by join count statistics such as Moran’s I and 
Geary’s C [38], which reflect the differing spatial 
structures of the smooth and rough surfaces.  Moran’s I 
varies from +1.0 for perfect positive correlation (a 
clumped pattern) to –1.0 for perfect negative correlation (a 
checkerboard pattern).  Geary’s C contiguity ratio, another 
index of spatial autocorrelation is similar to Moran’s I but 
normally ranges from 0.0 to 3.0, with 0.0 indicating 
positive correlation, 1.0 indicating no correlation, and 
values greater than 1.0 indicating negative correlation. 
These techniques (e.g. fractals, lacunarity, and spatial 
autocorrelation) are useful in image analysis primarily 
because they have sound mathematical bases.  Moreover, 
they can be applied directly to raw images without the 
need for classification or land-cover identification, thereby 
enabling their use as content-based data mining tools.  

Problems that arise when using multi-temporal remote-
sensing data for change detection include radiometric 
differences between images of different dates, pixel 
misregistration, the lack of appropriate data for earlier 
dates, the need to integrate multi-scale and multi-sensor 



data, and the lack of assessment of the results.  The most 
commonly used digital methods for change detection 
include post-classification comparison, image differencing, 
image ratioing, image regression, principal components 
analysis, and change vector analysis [19].  A major 
problem is that different studies utilizing different methods 
lead to different results.  For example, [39] quantitatively 
compared methods for examining shifting cultivation in 
the tropical forest environment of India and found that the 
simple image differencing performed better than the more 
sophisticated principal components analysis technique.  
Reference [40] reviewed several techniques to monitor 
coastal changes.  The authors found that principal 
components analysis combined with unsupervised 
classification of the component image gave good results.  
On the contrary, in a study of forest fires, [41] found that 
principal components analysis combined with 
unsupervised classification is not as satisfactory as the 
ratioing method. The increasing number of change-
detection studies being reported in the literature since the 
late 1980s (e.g., [40]) indicates clearly the need for 
development of better techniques for change detection.  

 
IV. CONTENT-BASED IMAGE DESCRIPTORS 

 
In a poster presentation for the October GIS 2002 

conference in Boulder, Colorado [4], fractal dimension 
was used as a content-based descriptor of image 
complexity.  Atlanta, Georgia's rapid population increase 
from 1990 to 2000 provided a case study for evaluating the 
performance of this index.  Census counts of population by 
census tract were interpolated to quarter-quadrangle sized 
areas using a volume-preserving overlay method.  
Georectified 10 m SPOT (tm) panchromatic imagery from 
1990 was resampled to 15 m resolution and subsetted to 
the quarter quadrangles.  15 m Landsat ETM+ 
panchromatic imagery from 2000 was also subsetted to the 
same quadrangles.  Global (whole image) fractal 
dimension measurements of the image subsets were 
obtained using the triangular prism method [43]-[44].    

A spatial regression of the 1990 SPOT fractal dimension 
values versus the 2000 ETM+ fractal dimension 
measurements was performed and the residuals from this 
regression were used in a subsequent regression against 
1990 - 2000 population growth, based on the idea that 
areas having the biggest differences between measured and 
modeled image complexity are areas that have experienced 
significant anthropogenic alterations to the land cover.  
This model yielded a relatively low agreement between the 
residuals and the interpolated population growth (R2 = 
0.37), which was not surprising, considering the overly 
simplistic model and the fact that urban land cover change 
can lead to both simpler and more complex surfaces.  This 
difference in complexity depends on the spatial extent of 
land clearance, building or road construction, or other 
alterations as compared to the resolution of the sensor.   

                         
               
a.  Duluth NE Quarter Quadrangle   b.  Duluth NE Quarter Quadrangle 

         1990 Spottm Panchromatic           2000 Landsat ETM+ Panchromatic 
 
Fig. 1.  Quadrangle Having Maximum Difference in Fractal Dimension 
 
  As a search tool, however, fractal dimension proved to be 
helpful in identifying areas of the city that had undergone 
significant land cover alteration as evidenced by changes 
in population. The pair of images in Figure 1 had the 
biggest difference in fractal dimension between 1990 and 
2000 and it is clear that extensive urbanization did occur in 
this time frame.  Areas of the city that did not undergo 
significant growth in this time frame had similar fractal 
dimension values on the two dates. 

 
V. SPATIAL RESOLUTION 

 
The effects of resampling 1 m resolution Ikonos imagery 

[43] and 15 m resolution Landsat 7 ETM+ panchromatic 
images to coarser resolutions illustrate the utility of fractal 
dimension in determining optimal pixel size.  The high-
resolution image in Fig. 2a. shows details such as 
automobiles on the highways, individual trees, and air 
conditioning equipment on the roofs of industrial facilities 
that are not visible in the ETM+ image (Fig. 2b.) or the 
resampled Ikonos image (Fig. 2c.).  These features are 
composed of relatively homogeneous blocks of similar 
pixel values.  Fig. 3 shows that resampling to coarser 
resolutions leads to a rapid increase of fractal dimension, 
indicating a rougher surface with light and dark areas 
closely adjacent.  At 8 m resolution, cars, trucks, and 
individual trees are no longer visible, and the increase in 
fractal dimension levels off. Beyond 16 m resolution, the 
fractal dimension increases, and continues up to a sill at 
approximately 60 m resolution.  This pattern is also 
reflected in the ETM+ image, although lower contrast and 
fewer shadows in the Landsat image lead to lower fractal 
dimension values. 

 
VI. LOCAL MEASURES OF IMAGE COMPLEXITY 

 
When measured in overlapping and non-overlapping 

subsets of a remotely sensed image, Moran’s I index of 
spatial autocorrelation and fractal dimension provide both 
a means for content-based image segmentation and edge 
detection.  The problem of characterizing the spatial extent 
of urban development was used as an example of the 



utility of local measures of these indices in both a single-
band image segmentation context and as an additional 
layer for spectral/spatial image classification.  The 
discussion in this section is based on a poster presentation 
at the December, 2002 American Geophysical Union 
Annual Meeting in San Francisco, California  [46].  
  

       
 

a. IKONOS 1 m Pan 
 

 
 

b. Landsat ETM+ 15 m Pan 
 

          
 

c. IKONOS 16 m  Pan 

Figure 2.  IKONOS and Landsat Images of NW Atlanta Quarter 
Quadrangle 
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The area around Traverse City, Michigan at the southern 
end of Grand Traverse Bay was used to compare fractal 
dimension and Moran’s I to Census block group-level 
indicators of urban development, such as total population, 
total housing units, and street density (total length of 
streets within a Census block group).  The local fractal 
dimension and Moran’s I indices were evaluated using 
Landsat 5 Thematic Mapper imagery from November 1, 
1990 and Landsat 7 Enhanced Thematic Mapper Imagery 
obtained on October 19, 2000.  Fig. 4 shows the result of 
computing fractal dimension of the 15 m resolution 
Landsat ETM+ pan image within a 21 x 21-pixel moving 
window incremented by 11 pixel steps.  The red areas 
indicate zones of higher geometric complexity.  The 
overlay of municipal boundaries indicates that highly 
complex urban areas tend to stand out from simpler natural 
backgrounds, although areas with high topographic relief 
and complex forested land covers also generate high 
fractal dimensions. 

Non-overlapping 11 x 11 pixel windows generated 
images segmented according to their fractal dimension or 
Moran’s I values.  The zonal mean values were computed 
for each Census block group and compared to the 
corresponding indicators of urban development. As 
indicated in the correlation matrix (Table 1), zonal mean 
Moran’s I values for the block groups were significantly 
correlated with the 2000 population and housing counts 
and was also significantly correlated with block group 
street density. Differences between the 1990 and 2000 
local Moran’s I values were significantly correlated with 
the number of new housing units.   

 



 

 
 
Fig. 4.  Local Fractal Dimension of Traverse City, Michigan Area 
 
 

 
VI. MULTISCALE MODELING 

 
Multiscale modeling has long been an issue in 

environmental research involving spatial data, as 
environmental and ecological phenomena are scale 
dependent in nature [47].  The scale issue is especially 
acute in the context of global change studies because of the 
need to integrate remote-sensing and other spatial data that 
are collected at different scales and resolutions.  
Extrapolation of results across broad spatial scales remains 
the most difficult problem in global environmental 
research [48]-[50].  There is a need for basic 
characterization of the effects of scale on image data, and 
the techniques used to measure these effects must be 
developed and implemented to allow for a multiple scale 
assessment of the data before any useful process-oriented 
modeling involving scale-dependent data can be conducted 
[51]-[52].  Preliminary results [53] show that changes in 
fractal dimension of images that are resampled to coarser 
resolutions indicate the optimum pixel size needed to 
observe physical phenomena that operate at characteristic 
spatial scales. 

 
VII. CONCLUSIONS 

 
The rapid growth in the number of sensors and the 

exponential growth in the size and complexity of image 
databases points toward the need for content-based 
metadata for use in mining this resource.  Content-based 
image descriptors can facilitate searches of imagery 
databases, although multi-spectral techniques are still 
needed to accurately classify urban land covers. Choosing 
the appropriate spatial scale for an analysis is crucial to 
understanding how local events and processes influence 
the whole Earth system.  Image descriptors such as fractal 

                                                             TABLE 1 
                         CORRELATION MATRIX FOR MICHIGAN LANDSAT IMAGE     

 
   

Fractal 
Dimension 

 
 

Moran’s I 

 
 

2000 Pop. 

2000 
Housing 

Units 

 
Street 

Density 
Fractal Correlation 1.00 0.323 0.356 0.231 -0.113 

Dimension Significance . 0.108 0.074 0.257 0.584 
Moran’s I Correlation 0.323 1.000 -0.461* -0.501** 0.740** 

 Significance 0.108 . 0.018 0.009 0 
2000 Pop. Correlation 0.356 -0.461* 1.000 0.950** -0.602 

 Significance 0.074 0.018 . 0 0.001 
2000 

Housing 
Correlation 0.231 -0.501** 0.950** 1.000 -0.584** 

Units Significance 0.257 0.009 0 . 0.002 
Street Correlation -0.113 0.740** -0.602 -0.584* 1.000 

Density Significance 0.584 0 0.001 0.002 . 
 *Significant 2-tailed correlation at 0.01      
 **Significant 2-tailed correlation at 0.05      
 



dimension can be added as Product Specific Attributes to 
the EOSDIS Core Metadata Model, and as such, they may 
be a helpful tag in mining large imagery databases.  
However, a single number cannot adequately characterize 
an entire scene, thus necessitating a pyramid approach that 
offers spatial index calculations at a range of resolutions 
and sizes of image subsets.  Benchmarking these indices as 
they relate to global change studies can lead to a better 
understanding of the implications of comparing older, low 
resolution imagery to newer, high resolution images. 
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